Similar to adding a column, you can replace an existing column by using the same column syntax (df[column] = value_for_each_row
) but with column
equal to an existing column name.
Using the same DataFrame shape from the previous exercise,
import pandas as pd df = pd.DataFrame({'name': ['Jeff', 'Esha', 'Jia'], 'age': [30, 56, 8]})
name | age | |
---|---|---|
1 | Jeff | 30 |
2 | Esha | 56 |
3 | Jia | 8 |
Write a function, age_in_days(df)
which takes in the DataFrame and returns a new DataFrame with the column age
modified to be in terms of days instead of years.
df = pd.DataFrame({'name': ['Jeff', 'Esha', 'Jia'], 'age': [30, 56, 8]})
name | age | |
---|---|---|
0 | Jeff | 30 |
1 | Esha | 56 |
2 | Jia | 8 |
age | |
---|---|
0 | 10950 |
1 | 20440 |
2 | 2920 |