Similar to adding a column, you can replace an existing column by using the same column syntax (df[column] = value_for_each_row) but with column equal to an existing column name.
Using the same DataFrame shape from the previous exercise,
import pandas as pd df = pd.DataFrame({'name': ['Jeff', 'Esha', 'Jia'], 'age': [30, 56, 8]})
| name | age | |
|---|---|---|
| 1 | Jeff | 30 |
| 2 | Esha | 56 |
| 3 | Jia | 8 |
Write a function, age_in_days(df) which takes in the DataFrame and returns a new DataFrame with the column age modified to be in terms of days instead of years.
df = pd.DataFrame({'name': ['Jeff', 'Esha', 'Jia'], 'age': [30, 56, 8]})
| name | age | |
|---|---|---|
| 0 | Jeff | 30 |
| 1 | Esha | 56 |
| 2 | Jia | 8 |
| age | |
|---|---|
| 0 | 10950 |
| 1 | 20440 |
| 2 | 2920 |